In elemental state, oxygen is a gas in the atmosphere and is dissolved in water. The amount of relatively reactive oxygen elemental remains constant only in long run, because O2 producing plants replace much as of aerobic breathing creatures as well as other combustion processes is used again (oxygen for energy). Without this biological cycle O2 would only occur in compounds, ie elemental O2 exists in a dynamic equilibrium.
An older method is based on chemical reactions barium oxide method. It is uneconomical due to high energy costs. For barium oxide is heated under air at 500 degrees C., the barium forms. When heated to 700 degrees C recorded earlier O2 is released by thermolysis again. Prior to development of Linde process, this method was the only way to pure O2 present.
Some oxygen-rich inorganic compounds such as potassium permanganate, potassium nitrate (saltpeter), potassium chlorate and potassium chromate enter upon heating or reaction with reducing agents from oxygen. A further possibility of producing O2 in laboratory, is the decomposition of hydrogen peroxide on platinum-plated nickel foil. Pure O2 can be obtained by electrolysis of 30% potassium hydroxide solution of nickel electrodes. It Hydrogen and O2 are separated.
This promoted the combustion gas and Scheele called it "fire air" or the origin. He found that air consists of O2 and this "foul air". Completely independent, was two years later produced by heating mercuric oxide O2 gas, the Englishman Joseph Priestley. The Briton published his findings in 1774, Scheele published his book Chemical Observations of air and the fire but only in 1777.
The binding and the properties of O2 molecule can be well explained by the molecular orbital model. The s and p atomic orbitals of individual atoms are assembled to form bonding and antibonding molecular orbitals. The 1s and 2s orbitals of O2 atoms are each to . Sigma.. Sub. S and . Sigma.. Sub. S - bonding and antibonding molecular orbitals.
Initially, the O2 has been accepted as a basic component for the formation of acids. Therefore, the term Oxygenium (acidifier) 1779 proposed by Lavoisier oxygen. In fact, most inorganic acids in solution of non-metal oxides in O2 water. The halogens, such as chlorine and bromine, is therefore held for a long time oxides of unknown elements. Only later was recognized that hydrogen is responsible for the acid character.
O2 is the most abundant and widespread element on earth. It occurs both in atmosphere and in lithosphere, hydrosphere and biosphere. O2 has a mass fraction of 50.5% of earth's crust (up to 16 km depth, including hydro and atmosphere). In air, his mass fraction is 23,16% (by volume: 20.95%), the water 88.8% (the sea water but only 86%, since there large amounts salts, eg. As sodium chloride are dissolved).
The most common stable oxygen isotope 16O (99.76%), in addition still comes 18O (0.20%) and 17O (0.037%) before. In addition to the stable oxygen isotopes are still a total of 13 unstable, radioactive nuclides from 12O to 28O are known which are artificially produced. Their half lives often are only milliseconds to seconds, with two minutes 15O this case has the longest half-life, and is frequently used in positron emission tomography.
An older method is based on chemical reactions barium oxide method. It is uneconomical due to high energy costs. For barium oxide is heated under air at 500 degrees C., the barium forms. When heated to 700 degrees C recorded earlier O2 is released by thermolysis again. Prior to development of Linde process, this method was the only way to pure O2 present.
Some oxygen-rich inorganic compounds such as potassium permanganate, potassium nitrate (saltpeter), potassium chlorate and potassium chromate enter upon heating or reaction with reducing agents from oxygen. A further possibility of producing O2 in laboratory, is the decomposition of hydrogen peroxide on platinum-plated nickel foil. Pure O2 can be obtained by electrolysis of 30% potassium hydroxide solution of nickel electrodes. It Hydrogen and O2 are separated.
This promoted the combustion gas and Scheele called it "fire air" or the origin. He found that air consists of O2 and this "foul air". Completely independent, was two years later produced by heating mercuric oxide O2 gas, the Englishman Joseph Priestley. The Briton published his findings in 1774, Scheele published his book Chemical Observations of air and the fire but only in 1777.
The binding and the properties of O2 molecule can be well explained by the molecular orbital model. The s and p atomic orbitals of individual atoms are assembled to form bonding and antibonding molecular orbitals. The 1s and 2s orbitals of O2 atoms are each to . Sigma.. Sub. S and . Sigma.. Sub. S - bonding and antibonding molecular orbitals.
Initially, the O2 has been accepted as a basic component for the formation of acids. Therefore, the term Oxygenium (acidifier) 1779 proposed by Lavoisier oxygen. In fact, most inorganic acids in solution of non-metal oxides in O2 water. The halogens, such as chlorine and bromine, is therefore held for a long time oxides of unknown elements. Only later was recognized that hydrogen is responsible for the acid character.
O2 is the most abundant and widespread element on earth. It occurs both in atmosphere and in lithosphere, hydrosphere and biosphere. O2 has a mass fraction of 50.5% of earth's crust (up to 16 km depth, including hydro and atmosphere). In air, his mass fraction is 23,16% (by volume: 20.95%), the water 88.8% (the sea water but only 86%, since there large amounts salts, eg. As sodium chloride are dissolved).
The most common stable oxygen isotope 16O (99.76%), in addition still comes 18O (0.20%) and 17O (0.037%) before. In addition to the stable oxygen isotopes are still a total of 13 unstable, radioactive nuclides from 12O to 28O are known which are artificially produced. Their half lives often are only milliseconds to seconds, with two minutes 15O this case has the longest half-life, and is frequently used in positron emission tomography.
About the Author:
You can visit boostcanada.ca for more helpful information about Guide To Oxygen For Energy.
Read more...